Drosophila TRPA1 Channel Is Required to Avoid the Naturally Occurring Insect Repellent Citronellal
نویسندگان
چکیده
Plants produce insect repellents, such as citronellal, which is the main component of citronellal oil. However, the molecular pathways through which insects sense botanical repellents are unknown. Here, we show that Drosophila use two pathways for direct avoidance of citronellal. The olfactory coreceptor OR83b contributes to citronellal repulsion and is essential for citronellal-evoked action potentials. Mutations affecting the Ca(2+)-permeable cation channel TRPA1 result in a comparable defect in avoiding citronellal vapor. The TRPA1-dependent aversion to citronellal relies on a G protein (Gq)/phospholipase C (PLC) signaling cascade rather than direct detection of citronellal by TRPA1. Loss of TRPA1, Gq, or PLC causes an increase in the frequency of citronellal-evoked action potentials in olfactory receptor neurons. Absence of the Ca(2+)-activated K(+) channel (BK channel) Slowpoke results in a similar impairment in citronellal avoidance and an increase in the frequency of action potentials. These results suggest that TRPA1 is required for activation of a BK channel to modulate citronellal-evoked action potentials and for aversion to citronellal. In contrast to Drosophila TRPA1, Anopheles gambiae TRPA1 is directly and potently activated by citronellal, thereby raising the possibility that mosquito TRPA1 may be a target for developing improved repellents to reduce insect-borne diseases such as malaria.
منابع مشابه
The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression
Citronellal, a well-known plant-derived mosquito repellent, was previously reported to repel Drosophila melanogaster via olfactory pathways involving but not directly activating Transient Receptor Potential Ankyrin 1 (TRPA1). Here, we show that citronellal is a direct agonist for Drosophila and human TRPA1s (dTRPA1 and hTRPA1) as well as Anopheles gambiae TRPA1 (agTRPA1). Citronellal-induced ac...
متن کاملTypical Monoterpenes as Insecticides and Repellents against Stored Grain Pests.
Five monoterpenes naturally occurring in essential oils were tested for their insecticidal and repellent activities against the bruchid beetle Callosobruchus maculatus and the maize weevil Sitophilus zeamais. The monoterpenes were highly efficient as inducers of mortality or repellency against both insect species. They were more efficient in their fumigant activity against C. maculatus than aga...
متن کاملDrosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons.
Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)beta and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation ch...
متن کاملResponse of Drosophila to Wasabi Is Mediated by painless, the Fly Homolog of Mammalian TRPA1/ANKTM1
A number of repellent compounds produced by plants elicit a spicy or pungent sensation in mammals . In several cases, this has been found to occur through activation of ion channels in the transient receptor potential (TRP) family . We report that isothiocyanate (ITC), the pungent ingredient of wasabi, is a repellent to the insect Drosophila melanogaster, and that the painless gene, previously ...
متن کاملBenzoquinone reveals a cysteine-dependent desensitization mechanism of TRPA1.
The transient receptor potential ankyrin 1 (TRPA1) nonselective cation channel has a conserved function as a noxious chemical sensor throughout much of Metazoa. Electrophilic chemicals activate both insect and vertebrate TRPA1 via covalent modification of cysteine residues in the amino-terminal region. Although naturally occurring electrophilic plant compounds, such as mustard oil and cinnamald...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010